Ktl-icon-tai-lieu

Chuyên đề đồng dư

Được đăng lên bởi Thành Nguyễn Trung
Số trang: 8 trang   |   Lượt xem: 3891 lần   |   Lượt tải: 12 lần
Chuyên đề
ĐỒNG DƯ THỨC
A.Tóm tắt các kiến thức cơ bản :
I/Định nghĩa : Cho m là số nguyên dương. Hai số nguyên a và b được gọi
đồng với nhau theo module m, nếu a - b chia hết cho m ( a - b )| m hay m\(a - b)
Ký hiệu : a ≡ b (mod m) được gọi là một đồng dư thức.
Ví dụ : 3 ≡ - 1 (mod 4)
5 ≡ 17 (mod 6)
18 ≡ 0 (mod 6)
Điều kiện a ≡ 0 (mod m) có nghĩa là bội của a m (a | m) hay m là ước
của a ( m \ a) .
Nếu a - b không chia hết cho m, ta viết a ≡ b (mod m)
II/ Các tính chất cơ bản :
1) Với mọi số nguyên a, ta có a ≡ a (mod m)
2) a ≡ b (mod m) => b ≡ a (mod m)
3) a ≡ b (mod m) và b ≡ c (mod m) => a ≡ c (mod m)
*Chứng minh : Ta có : a ≡ b (mod m) => a - b m (m \ (a - b)
và b ≡ c (mod m) => b - c m (m \ (b - c)
Vì a - c = (a - b) + (b - c) => a - c m (tính chất chia hết của tổng) hay
a ≡ c (mod m).
4) ) a ≡ b (mod m) và c ≡ d (mod m) => a + c ≡ b + d (mod m)
*Chứng minh :
Ta có : a ≡ b (mod m) => a - b  m => a - b = m.q1 (với q1 Z) (1)
c ≡ d (mod m) => c - d m => c - d = m.q2 (với q2  Z) (2)
Cộng (1) và (2) vế theo vế ta được : (a - b) + (c - d) = m.(q1 + q2)
<=> (a + c) - (b + d) = m.(q1 + q2) => (a + c) - (b + d) m
Hay a + c ≡ b + d (mod m)
Hệ quả : a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m)
=> a1 + a2 + a3 + ... + an ≡ b1 + b2 + b3 + ... + bn(mod m)
5) a ≡ b (mod m) và c ≡ d (mod m) => a.c ≡ b.d (mod m)
*Chứng minh :
Ta có : a - b = m.q1 = > a = b + m.q1 (với q1 Z) (1)
c - d = m.q2 => c = d + m.q2 (với q2  Z) (2)
Nhân (1) và (2) vế theo vế ta được : a.c = (b + m.q1)(d + m.q2)
ac = bd + bmq2 + dmq1 + m2q1q2 <=> ac - bd = m(bq2 + dq1 + mq1q2)
=> ac - bd m => ac ≡ bd (mod m).
Hệ quả : a) a1 ≡ b1 (mod m) , a2 ≡ b2 (mod m) , ... , an ≡ bn (mod m)
=> a1.a2.a3. ... .an ≡ b1.b2.b3. ... .bn(mod m)
1

b) a ≡ b (mod m) => an ≡ bn (mod m) - với mọi n  N
+Nhận xét :
a) * a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a + b ≡ 2 (mod 2)
Mà 2 ≡ 0 (mod 2) => a + b ≡ 0 (mod 2)
* a ≡ 1 (mod 2) và b ≡ 1 (mod 2) => a.b ≡ 1(mod 2)
Điều này có nghĩa : Tổng của hai số lẻ là một số chẵn, tích của hai số lẻ là một
số lẻ.
b)a ≡ 3 (mod 7) => a2 ≡ 9 (mod 7) ≡ 2 (mod 2)
Điều này có nghĩa : Nếu một số chia 7 dư 3 thì bình phương số đó chia 7 dư 2.
+Chú ý :
a)Không được chia hai vế của một đồng dư thức .
Ví dụ : * 2 ≡ 12 (mod 10) nhưng 1 ≡ 6 (mod 10).
b) a ≡ 0 (mod m) và b ≡ 0 (mod m), nhưng a.b có thể đồng dư với 0 theo
module m.
Ví dụ : 2 ≡ 0 (mod 10) và 5 ≡ 0 (mod 10), nhưng 2.5 = 10 ≡ 10 (mod 10).
Như vậy để phép chia hai vế của đồng thức đòi hỏi phải kèm theo một số điều
...
Chuyên đề
ĐỒNG DƯ THỨC
A.Tóm tắt các kiến thức cơ bản :
I/Định nghĩa : Cho m là số nguyên dương. Hai số nguyên a và b được gọi
đồng với nhau theo module m, nếu a - b chia hết cho m ( a - b )| m hay m\(a - b)
Ký hiệu : a ≡ b (mod m) được gọi là một đồng dư thức.
Ví dụ : 3 ≡ - 1 (mod 4)
5 ≡ 17 (mod 6)
18 ≡ 0 (mod 6)
Điều kiện a ≡ 0 (mod m) có nghĩa là bội của a
m (a | m) hay m là ước
của a ( m \ a) .
Nếu a - b không chia hết cho m, ta viết a ≡ b (mod m)
II/ Các tính chất cơ bản :
1) Với mọi số nguyên a, ta có a ≡ a (mod m)
2) a ≡ b (mod m) => b ≡ a (mod m)
3) a ≡ b (mod m) và b ≡ c (mod m) => a ≡ c (mod m)
*Chứng minh : Ta có : a ≡ b (mod m) => a - b
m (m \ (a - b)
và b ≡ c (mod m) => b - c
m (m \ (b - c)
Vì a - c = (a - b) + (b - c) => a - c
m (tính chất chia hết của tổng) hay
a ≡ c (mod m).
4) ) a ≡ b (mod m) và c ≡ d (mod m) => a + c ≡ b + d (mod m)
*Chứng minh :
Ta có : a ≡ b (mod m) => a - b
m => a - b = m.q
1
(với q
1
Z) (1)
c ≡ d (mod m) => c - d
m => c - d = m.q
2
(với q
2
Z) (2)
Cộng (1) và (2) vế theo vế ta được : (a - b) + (c - d) = m.(q
1
+ q
2
)
<=> (a + c) - (b + d) = m.(q
1
+ q
2
) => (a + c) - (b + d)
m
Hay a + c ≡ b + d (mod m)
Hệ quả : a
1
≡ b
1
(mod m) , a
2
≡ b
2
(mod m) , ... , a
n
≡ b
n
(mod m)
=> a
1
+ a
2
+ a
3
+ ... + a
n
≡ b
1
+ b
2
+ b
3
+ ... + b
n
(mod m)
5) a ≡ b (mod m) và c ≡ d (mod m) => a.c ≡ b.d (mod m)
*Chứng minh :
Ta có : a - b = m.q
1
= > a = b + m.q
1
(với q
1
Z) (1)
c - d = m.q
2
=> c = d + m.q
2
(với q
2
Z) (2)
Nhân (1) và (2) vế theo vế ta được : a.c = (b + m.q
1
)(d + m.q
2
)
ac = bd + bmq
2
+ dmq
1
+ m
2
q
1
q
2
<=> ac - bd = m(bq
2
+ dq
1
+ mq
1
q
2
)
=> ac - bd
m => ac ≡ bd (mod m).
Hệ quả : a) a
1
≡ b
1
(mod m) , a
2
≡ b
2
(mod m) , ... , a
n
≡ b
n
(mod m)
=> a
1
.a
2
.a
3
. ... .a
n
≡ b
1
.b
2
.b
3
. ... .b
n
(mod m)
1
Chuyên đề đồng dư - Trang 2
Để xem tài liệu đầy đủ. Xin vui lòng
Chuyên đề đồng dư - Người đăng: Thành Nguyễn Trung
5 Tài liệu rất hay! Được đăng lên bởi - 1 giờ trước Đúng là cái mình đang tìm. Rất hay và bổ ích. Cảm ơn bạn!
8 Vietnamese
Chuyên đề đồng dư 9 10 292