Ktl-icon-tai-lieu

Sử dụng Matlab - Chương 5

Được đăng lên bởi 187022106
Số trang: 37 trang   |   Lượt xem: 3492 lần   |   Lượt tải: 0 lần
CHƯƠNG 5: SYMBOLIC MATH TOOLBOXES 
 
§1. KHÁI NIỆM CHUNG 
 
Symbolic  Math  Toolboxes  kết  hợp  tính  toán  bằng  chữ  vào  môi  trường 
MATLAB. Các toolbox này bổ sung các tiện ích số và đồ thị với các kiểu tính 
toán toán học khác nhau. 
 
Tiện ích 
Nội dung 
Calculus 
đạo  hàm,  tích  phân,  giới  hạn,  tổng  và  chuỗi 
Taylor 
Linear Algebra 
nghịch  đảo,  định  thức,giá  trị  riêng,  phân  tích  và 
dạng chính tắc của ma trận. 
Simplification 
phương pháp rút gọn các biểu thức đại số 
Solution of Equations 
giải bằng chữ và bằng số các phương trình đại số 
và vi phân 
Variable‐Precision 
đánh giá độ chính xác của các biểu thức đại số 
Arithmetic 
Transform 
biến đổi Laplace, Fourrier  và z 
Special 
Mathematical  các hàm toán học đặc biệt của các ứng dụng toán 
Function 
học kinh điển 
 
Động  lực  tính  toán  nằm  dưới  các  toolbox  là  nhân  Maple,  một  hệ  thống 
tính toán được phát triển đầu tiên ở trường đại học Waterloo, Canada và sau 
đó  tại  Eidgenroessiche  Technische  Hochschule  Zurich,  Thuỵ  sĩ.  Maple  được 
thương mại hoá và hỗ trợ của công ty Waterloo Maple. 
  
§2. KHỞI ĐỘNG TOOLBOX 
1. Các đối tượng chữ: Trong phần này chúng ta sẽ xem xét cách tạo và dùng 
các đối tượng chữ. Chúng ta cũng sẽ xem xét các biến chữ mặc định. Symbolic 
Math Toolbox định nghĩa một kiểu dữ liệu MATLAB mới gọi là đối tượng chữ 
hay sym. Bên trong, một đối tượng chữ là một cấu trúc số liệu mà nó lưu biểu 
diễn chuỗi các kí tự. Symbolic Math Toolbox dùng các đối tượng chữ để biểu 
diễn các biến chữ, các biểu thức chữ, các ma trận chữ. 
 
2. Tạo các biến và các biểu thức chữ: Lệnh sym cho phép ta xây dựng các biến 
và các biểu thức chữ. Ví dụ lệnh: 
85

x = sym(ʹxʹ) 
a = sym(ʹalphaʹ) 
tạo ra các biến chữ là x và a với x là x và a là alpha. 
 
Giả  sử  ta  muốn  ta  muốn  dùng  biến  chữ  để  biểu  diễn  tỉ  lệ  vàng 
1+ 5
ρ=
. Ta dùng lệnh: 
2
rho = sym(ʹ(1 + sqrt(5))/2ʹ) 
Bây giờ ta có thể thực hiên các phép toán khác nhau với rho. Ví dụ : 
f = rho^2 ‐ rho ‐ 1 
  
f = 
(1/2+1/2*5^(1/2))^2‐3/2‐1/2*5^(1/2) 
Ta rút gọn biểu thức: 
 
simplify(f) 
  
ans = 
0 
Bây giờ giả sử ta muốn giải phương trình bậc 2  f = ax 2 + bx + c . Phát biểu: 
f = sym(ʹa*x^2 + b*x + cʹ) 
gán  biểu  thức  chữ  ax2  +  bx  +  c  cho  biến  f.  Tuy  nhiên  trong  trường  hợp  này 
Symbolic Math Toolbox không tạo ra các biến tương ứng với các số hạng a, b, 
c và x trong biểu thức. Để thực hiện các phép toán bằng chữ(ví dụ tích phân, 
đạo hàm, thay thế v.v) trên f ta phải tạo các biến ...
Để xem tài liệu đầy đủ. Xin vui lòng
Sử dụng Matlab - Chương 5 - Người đăng: 187022106
5 Tài liệu rất hay! Được đăng lên bởi - 1 giờ trước Đúng là cái mình đang tìm. Rất hay và bổ ích. Cảm ơn bạn!
37 Vietnamese
Sử dụng Matlab - Chương 5 9 10 527