Ktl-icon-tai-lieu

Áp dụng lượng giác xây dựng các BDT

Được đăng lên bởi Vns Taipro
Số trang: 83 trang   |   Lượt xem: 4471 lần   |   Lượt tải: 1 lần
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

HỒ VIẾT TÂN

ÁP DỤNG LƯỢNG GIÁC XÂY DỰNG
CÁC ĐẲNG THỨC, BẤT ĐẲNG THỨC
ĐẠI SỐ CÓ ĐIỀU KIỆN.

LUẬN VĂN THẠC SĨ KHOA HỌC

Hà Nội - 2009

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

HỒ VIẾT TÂN

ÁP DỤNG LƯỢNG GIÁC XÂY DỰNG
CÁC ĐẲNG THỨC, BẤT ĐẲNG THỨC
ĐẠI SỐ CÓ ĐIỀU KIỆN.

LUẬN VĂN THẠC SĨ KHOA HỌC
CHUYÊN NGÀNH: PHƯƠNG PHÁP TOÁN SƠ CẤP
MÃ SỐ: 60.46.40

Người hướng dẫn khoa học: PGS.TS. Nguyễn Vũ Lương

Hà Nội - 2009

MỞ ĐẦU

Toán sơ cấp là một lĩnh vực mà các kết quả được các chuyên gia
sáng tạo ra tương đối đầy đủ và hoàn thiện. Chính vì vậy việc nghiên
cứu để thu được một kết quả mới có ý nghĩa là điều rất khó. Khi đọc
một số tài liệu tham khảo chúng ta sẽ gặp một số bài toán đại số mà
khi giải chúng được chuyển thành bài toán lượng giác để giải. Việc sử
dụng các phép biến đổi lượng giác đa dạng sẽ giúp chúng ta có nhiều
hướng chứng minh hơn. Các đẳng thức, bất đẳng thức lượng giác rất
phong phú nếu chuyển được thành đẳng thức, bất đẳng thức đại số
chúng ta sẽ có một số lượng lớn các bài toán hay và khó. Tác giả bản
luận văn đã tìm được một số điều kiện cho phép chuyển các bài toán
lượng giác trong tam giác thành các bài toán đại số. Tác giả cũng đã
trình bày một số kỹ năng giải cho các bài toán đại số được xây dựng
đó cũng là một đóng góp nhỏ của luận văn. Tác giả cũng đưa ra công
cụ cho phép chuyển các đẳng thức, bất đẳng thức lượng giác trong tứ
giác lồi thành các đẳng thức, bất đẳng thức đại số.
Nội dung bản luận văn được chia làm hai chương.
Chương 1: Đẳng thức, bất đẳng thức lượng giác trong tam
giác và xây dựng bài toán đại số.
Trong chương này tác giả đã sưu tầm một số dạng bài toán hay trong
tam giác và sử dụng các bài toán này để xây dựng các đẳng thức, bất
đẳng thức đại số có điều kiện. Một đóng góp nhỏ có ý nghĩa trong
chương này là xây dựng kĩ năng giải đại số cho các bài toán mới được
xây dựng. Từ các bài toán đại số bằng cách đặc biệt hóa tác giả đưa
ra một số bài toán có hướng dẫn giải.
Chương 2: Đẳng thức, bất đẳng thức trong tứ giác lồi.
Tác giả đã chứng minh một số đẳng thức, bất đẳng thức lượng giác
cho tứ giác lồi và chuyển các đẳng thức, bất đẳng thức này thành các
đẳng thức, bất đẳng thức đại số có điều kiện.
Bản luận văn nghiên cứu một lĩnh vực rất nhỏ của toán học và đã thu

được một số kết quả có ý nghĩa. Tuy nhiên bản luận văn chắc chắn
còn nhiều thiếu sót, nên rất mong được sự góp ý của các thầy cô, các
bạn đồng nghiệp và độc giả quan tâm đến nội dung luận ...
ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
HỒ VIẾT TÂN
ÁP DỤNG LƯỢNG GIÁC Y DỰNG
C ĐNG T HỨC, BẤT ĐẲNG THỨC
ĐẠI SỐ ĐIỀU KIỆN.
LUẬN VĂN THẠC KHOA HỌC
Nội - 2009
Áp dụng lượng giác xây dựng các BDT - Trang 2
Để xem tài liệu đầy đủ. Xin vui lòng
Áp dụng lượng giác xây dựng các BDT - Người đăng: Vns Taipro
5 Tài liệu rất hay! Được đăng lên bởi - 1 giờ trước Đúng là cái mình đang tìm. Rất hay và bổ ích. Cảm ơn bạn!
83 Vietnamese
Áp dụng lượng giác xây dựng các BDT 9 10 97